36,619 research outputs found

    Method and apparatus for background signal reduction in opto-acoustic absorption measurement

    Get PDF
    The sensitivity of an opto-acoustic absorption detector is increased to make it possible to measure trace amounts of constituent gases. A second beam radiation path is created through the sample cell identical to a first path except as to length, alternating the beam through the two paths and minimizing the detected pressure difference for the two paths while the beam wavelength is tuned away from the absorption lines of the sample. Then with the beam wavelength tuned to the absorption line of any constituent of interest, the pressure difference is a measure of trace amounts of the constituent. The same improved detector may also be used for measuring the absorption coefficient of known concentrations of absorbing gases

    The next detectors for gravitational wave astronomy

    Full text link
    This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational waves. The next detectors will need to have greater sensitivity, while also enabling the world array of detectors to have improved angular resolution to allow localisation of signal sources. Sect. 1 of this paper begins by reviewing proposals for the next ground based detectors, and presents an analysis of the sensitivity of an 8 km armlength detector, which is proposed as a safe and cost-effective means to attain a 4-fold improvement in sensitivity. The scientific benefits of creating a pair of such detectors in China and Australia is emphasised. Sect. 2 of this paper discusses the high performance suspension systems for test masses that will be an essential component for future detectors, while sect. 3 discusses solutions to the problem of Newtonian noise which arise from fluctuations in gravity gradient forces acting on test masses. Such gravitational perturbations cannot be shielded, and set limits to low frequency sensitivity unless measured and suppressed. Sects. 4 and 5 address critical operational technologies that will be ongoing issues in future detectors. Sect. 4 addresses the design of thermal compensation systems needed in all high optical power interferometers operating at room temperature. Parametric instability control is addressed in sect. 5. Only recently proven to occur in Advanced LIGO, parametric instability phenomenon brings both risks and opportunities for future detectors. The path to future enhancements of detectors will come from quantum measurement technologies. Sect. 6 focuses on the use of optomechanical devices for obtaining enhanced sensitivity, while sect. 7 reviews a range of quantum measurement options

    Baseline design of the filters for the LAD detector on board LOFT

    Full text link
    The Large Observatory for X-ray Timing (LOFT) was one of the M3 missions selected for the phase A study in the ESA's Cosmic Vision program. LOFT is designed to perform high-time-resolution X-ray observations of black holes and neutron stars. The main instrument on the LOFT payload is the Large Area Detector (LAD), a collimated experiment with a nominal effective area of ~10 m 2 @ 8 keV, and a spectral resolution of ~240 eV in the energy band 2-30 keV. These performances are achieved covering a large collecting area with more than 2000 large-area Silicon Drift Detectors (SDDs) each one coupled to a collimator based on lead-glass micro-channel plates. In order to reduce the thermal load onto the detectors, which are open to Sky, and to protect them from out of band radiation, optical-thermal filter will be mounted in front of the SDDs. Different options have been considered for the LAD filters for best compromise between high quantum efficiency and high mechanical robustness. We present the baseline design of the optical-thermal filters, show the nominal performances, and present preliminary test results performed during the phase A study.Comment: Proc. SPIE 9144, Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 91446

    Nearby stars as gravitational wave detectors

    Full text link
    Sun-like stellar oscillations are excited by turbulent convection and have been discovered in some 500 main sequence and sub-giant stars and in more than 12,000 red giant stars. When such stars are near gravitational wave sources, low-order quadrupole acoustic modes are also excited above the experimental threshold of detectability, and they can be observed, in principle, in the acoustic spectra of these stars. Such stars form a set of natural detectors to search for gravitational waves over a large spectral frequency range, from 10−710^{-7} Hz to 10−210^{-2} Hz. In particular, these stars can probe the 10−610^{-6} Hz -- 10−410^{-4} Hz spectral window which cannot be probed by current conventional gravitational wave detectors, such as SKA and eLISA. The PLATO stellar seismic mission will achieve photospheric velocity amplitude accuracy of  cm/s~ {\rm cm/s}. For a gravitational wave search, we will need to achieve accuracies of the order of 10−2cm/s10^{-2}{\rm cm/s}, i.e., at least one generation beyond PLATO. However, we have found that multi-body stellar systems have the ideal setup for this type of gravitational wave search. This is the case for triple stellar systems formed by a compact binary and an oscillating star. Continuous monitoring of the oscillation spectra of these stars to a distance of up to a kpc could lead to the discovery of gravitational waves originating in our galaxy or even elsewhere in the universe. Moreover, unlike experimental detectors, this observational network of stars will allow us to study the progression of gravitational waves throughout space.Comment: 10 pages, 2 figures and 1 table. Published in The Astrophysical Journa

    Alternative Detection Methods for Highest Energy Neutrinos

    Full text link
    Several experimental techniques are currently under development, to measure the expected tiny fluxes of highest energy neutrinos above 10**18 eV. Projects in different stages of realisation are discussed here, which are based on optical and radio as well as acoustic detectors. For the detection of neutrino events in this energy range a combination of different detector concepts in one experiment seems to be most promising.Comment: 8 pages, 8 figures, to be published in Nuclear Physics B (Proceedings Supplement): Proceedings of the XXIst International Conference on Neutrino Physics and Astrophysics, Paris, June 14-19, 200
    • 

    corecore